
Profiling tools for LArSoft code

Gianluca Petrillo

MicroBooNE Offline Software Retreat
Yale University, March 19th , 2014

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 1 / 50

What is “profiling”

Profiling:
the assessment of the resources that a program uses

how much memory the program needs?
how much disk space?
how long it takes to run?

The optimization of a program starts from the analysis of the portions
of it which take the largest resources:

1 find which part of code (ab)uses resources
2 understand how the resources are being used (and why)
3 act: fix the bug, try a different approach or redesign in full

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 2 / 50

art Timing service

What Timing service does
At the end of each art module, the time elapsed by it is printed out.
The time is based on the “wall clock”.
It also provides the total time for the event, and a summary in the end.

+ out of the box with art

+ usually FCL files already have it enabled
+ if not, just add services.Timing: {} to the configuration
– rough code identification: just tells the module

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 3 / 50

art Timing service in action

The following timing is part of a 10-event run with 3D reconstruction,
(special configuration by Eric Church):
lar -c ./standard_reco_uboone_3D_cosmic_eric20140313.fcl \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\
_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root

It runs quite a number of reconstruction modules (13), plus some.

The format is:

TimeModule> run: 1 subRun: 5 event: 50 trackkalmanhit Track3DKalmanHit 105.286

meaning that the event #50 of run #1, subrun #5 has spent 105" (wall
clock time) running a Track3DKalmanHit module instance named
trackkalmanhit.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 4 / 50

art Timing service in action
This is well-formex text, which can be easily parsed. I have written my
own (SortModuleTimes.py LogFile):

[basicstyle=\ttfamily]
RandomNumberSaver[rns] 7.46965e-05" (RMS 20.3%)...
Track3DKalmanHit[trackkalmanhit] 84.5906" (RMS 35.2%)...
Track3DKalmanHit[trackkalmanhitcc] 63.3171" (RMS 38.2%)...
SpacePointFinder[spacepointfinder] 11.6491" (RMS 54.3%)...
Track3DKalmanSPS[trackkalsps] 3.79274" (RMS 35.6%)...
BezierTrackerModule[beziertracker] 29.1193" (RMS 29.3%)...
SpacePointFinder[spacepointfindercc] 5.33569" (RMS 51.1%)...
BezierTrackerModule[beziertrackercc] 22.72" (RMS 43.5%)...
Calorimetry[trackkalmanhitcalo] 13.1713" (RMS 37.1%)...
Calorimetry[trackkalmanhitcccalo] 9.71266" (RMS 34.5%)...
Calorimetry[trackkalspscalo] 7.75189" (RMS 49.4%)...
BezierCalorimetry[beziertrackercccalo] 0.00275586" (RMS 21.8%)...
BezierCalorimetry[beziertrackercalo] 0.0031462" (RMS 18.1%)...
BeamFlashCompatibilityCheck[beamflashcompat] 0.00579774" (RMS 20.2%)...
TriggerResultInserter[TriggerResults] 3.03507e-05" (RMS 9.6%)...
RootOutput[out1] 0.599855" (RMS 25.4%)...
=== events === 252.207" (RMS 34.9%)...

Track3DKalmanHit is our next stop...
G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 5 / 50

Google gperftools

What gperftools does
gperftools provides statistical usage information for all the
functions.
The job is sampled 100 times per second.

+ full call stack information reduces ambiguities
+ in-function timing
+ less than 2% overhead (i.e., slowdown)
+ conversion to callgrind format
– sampling: information is subject to error
– documentation is not very good; does it cope well with a busy

system?
– I couldn’t actually extract the full stack information...

gperftools is currently not provided by UPS (but we could fix that).
G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 6 / 50

gperftools: usage

gperftools requires their library to be linked to the program to be
profiled. The easiest way is to do it dynamically:
env LD_PRELOAD=libprofiler.so CPUPROFILE=gperftools.prof \
lar -c ./standard_reco_uboone_3D_cosmic_eric20140313.fcl \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root

or
larrun.sh --gperf \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root \
./standard_reco_uboone_3D_cosmic_eric20140313.fcl

(larrun.sh is a helper script, a seldom-updated version available in
LArSoft wiki profiling page).
The output can be converted to “callgrind” format by
pprof -callgrind $(which lar) gperftools.prof > gperftools-callgrind.txt

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 7 / 50

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Profiling_LArSoft_

Inclusive and exclusive timing

Profilers usually report two timings with complementary information.
inclusive time is how much time the function takes from the beginning

to the end, including everything it happens inside it
exclusive time is the time spent inside the function code, excluding the

calls to other functions

void SortedInsertion(std::vector<double>& vect, double value) {
size_t i = vect.size();
while (i > 0) if (value > vect[--i]) {

vect.insert(vect.begin()+i+1, value);
return;

} // while
vect.insert(vect.begin(), value);

} // SortedInsertion()

The inclusive time includes all the time of the function, while the
exclusive time will include the time spent in the loop and the check, but
not the one in std::vector::insert, which is a separate function.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 8 / 50

A visualizer for callgrind

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 9 / 50

A map of the memory

The memory “footprint” of a program is how
much memory the program needs in order to
run.
We start to be interested to it when remote
sites kill our job based on such a figure, for
example 4 GB,. The memory is made of:

libraries (mostly) not our fault, but it’s
accounted on us nevertheless

stacks where the local variables stay;
usually negligible

heap & more where the dynamic memory is
allocated (via new)

The total of this memory is known as virtual
size (VSIZE). The resident size (RSS)
excludes the libraries (and something more).

more
dynamic memory

2700 MiB

12
50

 M
iB

“heap”

850 MiB

8
50

 M
iB

4.0 GiB

1.0 GiB

2.0 GiB

3.0 GiB

“libraries”

1450 MiB

6
00

 M
iB

Stack (< 1MiB)

0.0 GiB

2.7 GiB

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 10 / 50

art SimpleMemoryCheck service

What SimpleMemoryCheck service does
At the end of each art module, if the memory usage is increased,
that’s printed out.
The reported memory is both “VSIZE” and “RSS”.
A summary at the end also shows peak memory usage.

This tool is good to detect steadily increase on memory and a first
guess of where it happens.

+ out of the box with art

+ most of MicroBooNE FCL files already have it enabled
+ if not, just add services.SimpleMemoryCheck: {} to the

configuration
– rough code identification: just tells the module
– rough memory estimation: only samples module boundaries
– reported peak memory can be far from the actual one
– sometimes the reported VSIZE is suspicious (smaller than RSS)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 11 / 50

massif (valgrind tool)

What massif does
massif monitors all the memory allocations, and where they occur.
It samples frequently, but reports details only when the memory
changes dramatically.

+ precise information: how much memory allocated for each
function in a call stack

+ possibility to track memory at lower level (mmap instead of
malloc/new)

+ possibility to track stacks
+ graphic visualizers help
– detailed sampling can miss the part you are interested in
– valgrind-slow; tracking stacks is valgrind2-slow

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 12 / 50

massif (valgrind tool): usage

Run it straight with:
valgrind --tool=massif -n 5 \
lar -c ./standard_reco_uboone_3D_cosmic_eric20140313.fcl \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root

or
larrun.sh --massif \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root \
./standard_reco_uboone_3D_cosmic_eric20140313.fcl -n 5

Then do something else. Chances are that you find the problem by
looking at the code before massif is done.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 13 / 50

massif example: general shape (detsim)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 14 / 50

Profiling times

Currently, I can run with e4:prof code:
plain run: 100-event samples (thousands should not be a problem)
statistical CPU speed profiling: just a few percent overhead
complete call profiling: 5-event chunks
memory profiling: roughly as the complete call profiling (it’s still
valgrind)
memory and stack profiling: 3-event chunks (takes longer than
just memory)

A 8 GB memory machine would help making this quicker (virtual
memory is deadly — for many people, if the machine is shared).

Stack profiling has shown to be not necessary (fortunately!).

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 15 / 50

Outlook

each profiling tool has its strengths
they must be understood, or wrong conclusions will be drawn
best coding practises should be routinely applied (not “at the end”)
testing is an important part of both the development and the
optimization process

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 16 / 50

Best coding practises?

I am no coding authority, so my opinion follows:
design and implement a test together with the code
use dynamic allocation (new operator) only if a pointer to the data
is needed
never allow “naked” pointers to exit the creation scope
when writing large-iteration loops, move the constant things out of
them
for the analysis of a lot of items, apply all the analysis steps to one
item, rather than performing one step on all items
beware of continuous reallocation of memory
(std::vector::push_back), reserve the memory beforehand
when possible
reduce the copies of objects: use references, in-place construction
(std::vector::emplace_back) or, if possible, std::move

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 17 / 50

Supplemental material

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 18 / 50

What is memory fragmentation

std::vector<TMatrixD> M;
std::vector<TVectorD> V;
for (size_t i = 0; i < BigNumber; ++i) {

M.push_back(TMatrixD(36));
V.push_back(TVectorD(36));

}
M.clear();
double* data = new double[BigBummer];

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 19 / 50

What is memory fragmentation

std::vector<TMatrixD> M;
std::vector<TVectorD> V;
for (size_t i = 0; i < BigNumber; ++i) {

M.push_back(TMatrixD(36));
V.push_back(TVectorD(36));

}
M.clear();
double* data = new double[BigBummer];

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 20 / 50

What is memory fragmentation

std::vector<TMatrixD> M;
std::vector<TVectorD> V;
for (size_t i = 0; i < BigNumber; ++i) {

M.push_back(TMatrixD(36));
V.push_back(TVectorD(36));

}
M.clear();
double* data = new double[BigBummer];

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 21 / 50

What is memory fragmentation

std::vector<TMatrixD> M;
std::vector<TVectorD> V;
for (size_t i = 0; i < BigNumber; ++i) {

M.push_back(TMatrixD(36, 36));
V.push_back(TVectorD(36));

}
M.clear();
double* data = new double[BigBummer];

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 22 / 50

What is memory fragmentation

std::vector<TMatrixD> M;
std::vector<TVectorD> V;
for (size_t i = 0; i < BigNumber; ++i) {

M.push_back(TMatrixD(36));
V.push_back(TVectorD(36));

}
M.clear();
double* data = new double[BigBummer];

The red rectangle outlines the heap memory usage of the program.
Note the white holes of unused memory.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 23 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We start with an empty vector.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 24 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the first element:
1 memory is allocated for the element

2 the object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 25 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the first element:
1 memory is allocated for the element
2 the object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 25 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the second element:
1 memory is allocated for two elements (in fact, gcc’s STL vector

doubles the space)

2 the existing object is moved
3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 26 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the second element:
1 memory is allocated for two elements (in fact, gcc’s STL vector

doubles the space)
2 the existing object is moved

3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 26 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the second element:
1 memory is allocated for two elements (in fact, gcc’s STL vector

doubles the space)
2 the existing object is moved
3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 26 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the third element:
1 memory is allocated for four more elements (again doubling the

space)

2 the existing objects are moved
3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 27 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the third element:
1 memory is allocated for four more elements (again doubling the

space)
2 the existing objects are moved

3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 27 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We push in the third element:
1 memory is allocated for four more elements (again doubling the

space)
2 the existing objects are moved
3 the old memory is freed; the new object is copied

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 27 / 50

Why to use std::vector::reserve

std::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);

We had:
3 copy-constructed objects
3 memory allocations
2 memory deallocations
2 “fast” copies (possibly not involving copy constructors)
some fragmented memory in the end

Had we used a v.reserve(4) call after defining the vector:
3 copy-constructed objects
1 memory allocation
compact memory in the end

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 28 / 50

CPU profiling: options

We have different possibilities to collect that information:
inclusive timing based on the system clock, it can be the overall run

time (e.g. time builtin in bash) or time report at
checkpoints

sampling peek into the program at random times to see what it is
doing (same principle as Monte Carlo integration)

stepping monitor every function call and how long it takes to
complete

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 29 / 50

CPU profiling tools

time (bash command): per-run information
Timing (art service): per-event, module-level information

gperftools (Google) quick snapshot of where time is spent with full
call history

callgrind (valgrind tool) count of each call and used cycles

A number of other tools are available: GNU gprof (told not to deal too
well with C++11 yet), FermiLab FAST (same features as gperftools,
but falling behind as the PC architecture evolves), Open|SpeedShop
(also same features as gperftools, plus a nice interface, but a
nightmare to compile), IgProf (I haven’t tried), ...

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 30 / 50

art Timing service in action

(by grep ^Time LogFile | uniq)

TimeModule> run: 1 subRun: 5 event: 50 rns RandomNumberSaver 6.91414e-05
TimeModule> run: 1 subRun: 5 event: 50 trackkalmanhit Track3DKalmanHit 105.286
TimeModule> run: 1 subRun: 5 event: 50 trackkalmanhitcc Track3DKalmanHit 87.4242
TimeModule> run: 1 subRun: 5 event: 50 spacepointfinder SpacePointFinder 21.3958
TimeModule> run: 1 subRun: 5 event: 50 trackkalsps Track3DKalmanSPS 3.35858
TimeModule> run: 1 subRun: 5 event: 50 beziertracker BezierTrackerModule 39.4198
TimeModule> run: 1 subRun: 5 event: 50 spacepointfindercc SpacePointFinder 7.3756
TimeModule> run: 1 subRun: 5 event: 50 beziertrackercc BezierTrackerModule 26.9663
TimeModule> run: 1 subRun: 5 event: 50 trackkalmanhitcalo Calorimetry 14.1294
TimeModule> run: 1 subRun: 5 event: 50 trackkalmanhitcccalo Calorimetry 8.17911
TimeModule> run: 1 subRun: 5 event: 50 trackkalspscalo Calorimetry 6.37939
TimeModule> run: 1 subRun: 5 event: 50 beziertrackercccalo BezierCalorimetry 0.00312591
TimeModule> run: 1 subRun: 5 event: 50 beziertrackercalo BezierCalorimetry 0.00385594
TimeModule> run: 1 subRun: 5 event: 50 beamflashcompat BeamFlashCompatibilityCheck 0.00662398
TimeModule> run: 1 subRun: 5 event: 50 TriggerResults TriggerResultInserter 3.09944e-05
TimeModule> run: 1 subRun: 5 event: 50 out1 RootOutput 0.583466
TimeEvent> run: 1 subRun: 5 event: 50 320.972
TimeReport ---------- Time Summary ---[sec]----
TimeReport CPU = 2517.729662 Real = 2542.718000
TimeReport> Time report complete in 2529.08 seconds

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 31 / 50

gperftools in action

The output of gperftools is binary, and it can be converted in text or
other formats by pprof script (provided with gperftools):
pprof --text lar gperftools.prof > gperftools.txt

The top of the output:

23681 9.3% 9.3% 23681 9.3% boost::numeric::ublas::basic_row_major::element .../functional.hpp:1374
17295 6.8% 16.1% 17295 6.8% __log10_finite ??:?
16625 6.5% 22.6% 16625 6.5% std::local_Rb_tree_increment tree.cc:?
11845 4.6% 27.2% 11845 4.6% __exp_finite ??:?
9677 3.8% 31.0% 9677 3.8% _IO_str_seekoff ??:?
9462 3.7% 34.7% 9462 3.7% trkf::SpacePointAlg::makeSpacePoints@8e830 .../stl_tree.h:1166
6720 2.6% 37.3% 11757 4.6% trkf::SpacePointAlg::makeSpacePoints@8e830 .../SpacePointAlg.cxx:1274

We can see the number of samples we collected in each function, the
fraction respect to the total, “exclusive” timing (and its cumulative
value), the samples we collected in the functions or in the ones it
called, and its fraction, “inclusive” timing.
Let’s sort after the latter (-cum option):

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 32 / 50

gperftools listing

The top of the output, skipping main-like functions:
0 0.0% 0.0% 211908 83.0% main

[...]
0 0.0% 0.0% 140808 55.2% trkf::Track3DKalmanHit::produce
0 0.0% 0.0% 63622 24.9% trkf::SeedFinderAlgorithm::GetSeedsFromUnSortedHits

513 0.2% 0.2% 63584 24.9% trkf::SeedFinderAlgorithm::FindSeeds
19659 7.7% 7.9% 61726 24.2% trkf::SpacePointAlg::makeSpacePoints@8e830

13 0.0% 7.9% 50961 20.0% matrix_assign (inline)
8 0.0% 7.9% 45492 17.8% trkf::Propagator::noise_prop

99 0.0% 7.9% 37397 14.6% trkf::KalmanFilterAlg::extendTrack
155 0.1% 8.0% 36997 14.5% trkf::Propagator::vec_prop
16 0.0% 8.0% 32677 12.8% trkf::Propagator::lin_prop
572 0.2% 8.2% 30938 12.1% boost::numeric::ublas::indexing_matrix_assign

[...]
0 0.0% 19.9% 26636 10.4% trkf::BezierTrackerModule::produce
4 0.0% 19.9% 26163 10.2% ServiceHandle (inline)

2258 0.9% 20.7% 25812 10.1% apply (inline)
12 0.0% 20.7% 25130 9.8% calo::Calorimetry::produce
464 0.2% 20.9% 24273 9.5% boost::numeric::ublas::matrix_assign
854 0.3% 21.3% 23172 9.1% trkf::BezierTrack::GetClosestApproach

[...]
1 0.0% 30.2% 17290 6.8% trkf::BezierTrackerAlgorithm::FilterOverlapTracks
29 0.0% 30.2% 17287 6.8% trkf::KalmanFilterAlg::smoothTrack

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 33 / 50

A visualizer for callgrind

gperftools has a lot more of information, but it’s not easy to get to it.
pprof -callgrind lar gperftools.prof > gperftools-callgrind.txt

converts the information in callgrind’s format. Why do we care?

There are some graphic visualizer for callgrind!
for KDE: kcachegrind (OK, it’s for cachegrind... same format)
in Eclipse’s Linux Tools Project

Beware!!!
The conversion is far from being perfect, some values are wrong!

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 34 / 50

valgrind

valgrind is a sort of CPU emulator, which dresses (“instruments”)
each instruction that the program runs.
The monitoring of the program is almost complete.
The price is an almost unbearable execution overhead.
On top of valgrind, a number of “tools” are available:
memcheck memory leak detection (the “default” tool)
callgrind, cachegrind CPU profiling
massif, dhat memory profiling
nulgrind “will run roughly 5 times more slowly than normal, for no

useful effect”
... and a few more

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 35 / 50

callgrind (valgrind tool)

What callgrind does
callgrind monitors all the function calls, counting how many times
they happen and how long they take.

+ precise information: how many times each function has been
called, how many CPU cycles it has used

+ in-function timing
– information can be misleading (there no full stack information, the

call graph is less informative than it looks)
– valgrind-slow

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 36 / 50

callgrind (valgrind tool): usage

Run it straight with:
valgrind --tool=callgrind -n 5 \
lar -c ./standard_reco_uboone_3D_cosmic_eric20140313.fcl \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root

or
larrun.sh --callgrind \
-s prodgenie_bnb_nu_cosmic_3window_uboone_15367667_4_gen_15367673_4\

_g4_15367682_4_detsim_tpc_15367771_4_detsim_optical_15367859_4_reco2D.root \
./standard_reco_uboone_3D_cosmic_eric20140313.fcl -n 5

Then do something else.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 37 / 50

callgrind (valgrind tool) in action (I)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 38 / 50

callgrind (valgrind tool) in action (II)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 39 / 50

CPU profiling summary

tools provide complementary information
tools information can be deceiving (or plainly wrong)
once the bottleneck is detected, still work to be done!

Grampa’s hints:
beware of loops with a lot of iterations

put only what strictly needed, pull the rest outside
dont’ write messages there (even mf::LogDebug() ones, since
the message is still processed)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 40 / 50

Example (I)

This is where gperftools is pointing to a nested for loop:
larreco/RecoAlg/SpacePointAlg.cxx, line 1267
for(std::map<unsigned int, art::Ptr<recob::Hit> >::const_iterator

ihit2 = hitmap[cstat][tpc][plane2].lower_bound(wmin);
ihit2 != hitmap[cstat][tpc][plane2].upper_bound(wmax); ++ihit2) {

int wire2 = ihit2->first;
const art::Ptr<recob::Hit>& phit2 = ihit2->second;

// Get corrected time of second hit.

double t2 = phit2->PeakTime() - detprop->GetXTicksOffset(plane2,tpc,cstat);

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 41 / 50

Example (II)

Pulling out stuff from the loop:
const double TicksOffset2 = detprop->GetXTicksOffset(plane2,tpc,cstat);

std::map<unsigned int, art::Ptr<recob::Hit> >::const_iterator
ihit2 = hitmap[cstat][tpc][plane2].lower_bound(wmin),
ihit2end = hitmap[cstat][tpc][plane2].upper_bound(wmax);

for(; ihit2 != ihit2end; ++ihit2) {

int wire2 = ihit2->first;
const art::Ptr<recob::Hit>& phit2 = ihit2->second;

// Get corrected time of second hit.

double t2 = phit2->PeakTime() - TicksOffset2;

might help (or not).
In this case, acting in this way in 4 different points of the code,
SpacePointFinder became 20% faster and Track3DKalmanHit
15%, while the other modules fluctuated on ±2%. On the event the
gain was 10%.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 42 / 50

Memory usage profiling

Goal:
Map the memory usage to the places where it is requested, and

analyse its evolution in time.

Memory usage needs to be controlled in environments with limited
resources (e.g., all the CPU farms).

large pools of memory might be reduced by on-demand loading
redesign of algorithms can reduce the need for caching (e.g.,
convert from one loop to load everything and one to analyse to
one loop to load and analyse each event)
constant increase of memory without its release can be identified
and fixed
sudden peaks of memory usage can be smoothed
memory fragmentation can be mitigated

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 43 / 50

Memory profiling tools

pmap (Linux command): total memory map
SimpleMemoryCheck (art service): monitor per-event, module-level

memory increase
massif (valgrind tool) records each allocation and deallocation

There are, as usual, more tools (for example, other valgrind tools,
memcheck and dhat, and gperftools also has memory check
capabilities),

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 44 / 50

Linux memory map (pmap)

Linux knows how much memory it is allowing the programs to run. This
information can be accessed by:
from procfs /proc/PID/maps “file” gives a picture of the memory

used by process number PID
AddMemoryMap.py (a script of mine) does the same (more control)

pmap has different options for the same thing
If you are running MacOS, there must be other ways (which I ignore).
Out of AddMemoryMap.py -s mapsize /proc/PID/maps :

[...]
676212 KiB 25012 KiB | /usr/lib64/libicudata.so.52.1
1523792 KiB 847580 KiB | [heap]
2794028 KiB 1270236 KiB |

/proc/PID/maps: 2861084672 bytes (2728.54 MiB) in 1099 pages and 250 groups

with the first column the total so far, the dynamic memory shown in
blue and the total memory usage in red.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 45 / 50

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/_Profiling_LArSoft_

art SimpleMemoryCheck in action

From grep Memory LogFile.log of a 10-event run log:

%MSG-w MemoryCheck: Track3DKalmanHit:trackkalmanhit 14-Mar-2014 18:32:43 CDT
run: 1 subRun: 5 event: 42
MemoryCheck: module Track3DKalmanHit:trackkalmanhit VSIZE 1819.14 58.4375 RSS 1148.49 63.0703
%MSG-w MemoryCheck: Track3DKalmanHit:trackkalmanhitcc 14-Mar-2014 18:34:11 CDT
run: 1 subRun: 5 event: 42
MemoryCheck: module Track3DKalmanHit:trackkalmanhitcc VSIZE 1831.12 11.9844 RSS 1159.99 11.5
%MSG-w MemoryCheck: SpacePointFinder:spacepointfinder 14-Mar-2014 18:34:28 CDT
run: 1 subRun: 5 event: 42
MemoryCheck: module SpacePointFinder:spacepointfinder VSIZE 1831.96 0.839844 RSS 1160.83 0.839844
%MSG-w MemoryCheck: Track3DKalmanSPS:trackkalsps 14-Mar-2014 18:34:34 CDT
run: 1 subRun: 5 event: 42
MemoryCheck: module Track3DKalmanSPS:trackkalsps VSIZE 1839.23 7.26172 RSS 1167.23 6.40234
[...]
%MSG-w MemoryCheck: Calorimetry:trackkalspscalo 14-Mar-2014 18:53:50 CDT
run: 1 subRun: 5 event: 46
MemoryCheck: module Calorimetry:trackkalspscalo VSIZE 1888.11 5.03516 RSS 1213.49 3.33203
%MSG-w MemoryCheck: RootOutput:out1 14-Mar-2014 18:53:50 CDT run: 1 subRun: 5 event: 46
MemoryCheck: module RootOutput:out1 VSIZE 1905.07 16.9688 RSS 1232.01 18.5234
MemoryReport> Peak virtual size 1905.07 Mbytes

The peak memory can be wrong, but it’s still informative.

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 46 / 50

massif (valgrind tool): example

A detailed snapshot of a 2-event reco run writing a large event:
snapshot=951
#-----------
time=2755749742080
mem_heap_B=2222708828
mem_heap_extra_B=47481604
...
n10: 2222708828 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
n2: 1244677004 ...: TStorage::ReAllocChar(...) (in .../libCore.so)
n4: 631258836 ...: TBuffer::Expand(int, bool) (in .../libCore.so)
n1: 433599113 ...: TBasket::ReadBasketBuffers(long long, int, TFile*) (in .../libTree.so)
...

n1: 166661418 ...: art::Ptr<raw::RawDigit>::getData_() const (.../Ptr.h:457)
n1: 166661418 ...: trkf::SeedFinderAlgorithm::FindSeeds() (.../Ptr.h:344)
n1: 166661418 ...: trkf::SeedFinderAlgorithm::GetSeedsFromUnSortedHits(...) (.../SeedFinderAlgorithm.cxx:1125)
n1: 166661418 ...: trkf::Track3DKalmanHit::produce(art::Event&) (.../Track3DKalmanHit_module.cc:372)
...

n1: 166435561 ...: TBasket::WriteBuffer() (in libTree.so)
...

n1: 166435561 ...: art::RootOutput::write(...) (.../RootOutput_module.cc:155)

(ellipses are mine)
It says 2.2 GB of memory are allocated via malloc/new, more than
half by ROOT tree (a good lot for writing, plus some for reading).

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 47 / 50

massif example: general shape (detsim)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 48 / 50

massif example: memory leak + spike (reco 2D)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 49 / 50

massif example: memory fragmentation? (reco 3D)

G. Petrillo (University of Rochester) Profiling LArSoft March 19th , 2014 50 / 50

	Introduction
	CPU usage profiling
	Memory usage profiling
	Outlook
	Appendix
	CPU usage profiling
	Memory usage profiling

